A new approach to multiple class pattern classification with random matrices
نویسندگان
چکیده
We describe a new approach to multiple class pattern classification problems with noise and high dimensional feature space. The approach uses a random matrix X which has a specified distribution with mean M and covariance matrix ri j(Σs +Σ ) between any two columns of X . When Σ is known, the maximum likelihood estimators of the expectation M, correlation Γ, and covariance Σs can be obtained. The patterns with high dimensional features and noise are then classified by a modified discriminant function according to the maximum likelihood estimation results. This new method is compared with a multilayer feed forward neural network approach on nine digit recognition tasks of increasing difficulty. Both methods achieved good results for those classification tasks, but the new approach was more effective and more efficient than the neural network method for difficult problems.
منابع مشابه
تحلیل ممیز غیرپارامتریک بهبودیافته برای دستهبندی تصاویر ابرطیفی با نمونه آموزشی محدود
Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...
متن کاملSelecting a new pattern for the betterment of informal settlements in Iran
Nowadays, informal settlement phenomenon is in the top of the list of urban management issues in majority of big and medium sized cities of Iran. Despite of various interventions in recent decades, significant change cannot be seen. One of the most important reasons of this situation is the theoretical passivity alongside with obsolescence of informal settlements' literature in Iran, since loca...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JAMDS
دوره 9 شماره
صفحات -
تاریخ انتشار 2005